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 Prognosis of hypertension leads to organ damage by causing nephropathy, stroke, retinopathy and cardiomegaly. 

Kidney, retinopathy and blood pressure (BP) have been discussed in plenty in relation with catecholamines of 

autonomic nervous system (ANS) and angiotensin II of renin angiotensin aldosterone system but very little have 
been told about the role of endocannabinoid system (ECS) in the regulation of kidney function, retinopathy and 

BP. ECS is a unique system in the body, which can be considered as master regulator of body functions. It 

encompasses endogenous production of its cannabinoids, its degrading enzymes and functional receptors, which 

innervate and perform various functions in different organs of the body. Kidney, retinopathy and BP pathologies 

arise normally due to elevated catecholamine and ang II, which are vasoconstrictor in their biological nature. 
Question arise which system or agent counterbalances the vasoconstrictors effect of noradrenaline and ang II in 

normal individuals? This review will not only try to illustrate the significance of ECS in the kidney and BP regulation 

but also establish the connection of ECS with ANS and ang II. This review will also explain that ECS, which is 

vasodilator in its action either independently counteract the effect produced with the vasoconstriction of ANS and 

ang II or by blocking some of the common pathways shared by ECS, ANS, and ang II in the regulation of kidney and 
BP regulation. This article conclude that persistent control of BP and normal functions of kidney is maintained 

either by decreasing systemic catecholamine, ang II or by up regulation of ECS, which will result in the regression 

of nephropathy, stroke, retinopathy, and cardiomegaly induced by hypertension. 
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INTRODUCTION: ENDOCANNABINOID 

SYSTEM AND ITS AGONISTS 

Endocannabinoid system (ECS) is the poorly studied 

system in human body as it contains stigma word “cannabis”. 

It has been documented that ECS is directly involved in 

apoptosis, levels of neurotransmitter and homeostasis [1]. 

Similar to renin angiotensin system (RAS) and autonomic 

nervous system (ANS) (autonomic system), ECS has wide 

distribution throughout the human body in different organs 

like gut [2], kidney [3], brain [4], heart [5], and eyes [6]. Similar 

to RAS and ANS, this system possess its own receptors and 

ligands, which are involved in many human body functions like 

antiproliferative, anti-inflammatory and antimetatstic effects 

[7]. 

ECS consists of the two endogenous agonists of 

cannabinoid receptor agonists, anandamide (AEA) and 2-

arachidonylglycerol (2-AG) [8], their respective hydrolyzing 

enzymes, fatty acyl amide hydrolase (FAAH) [9] and 

monoacylglycerol lipase (MAGL) [10], and the cannabinoid 

receptors, CB1 [11] and CB2 [12]. AEA is synthesized mostly by 

release from N-arachidonoyl phosphatidylethanolamine (PE) 

mediated by N-arachidonoyl PE-specific phospholipase D, and 

its agonist effect on CB receptors is controlled by FAAH-

mediated metabolism to inactive arachidonic acid and 

ethanolamine [12]. In contrast, 2-AG is synthesized from 

membrane phospholipids by phospholipase C beta and 

diacylglycerol lipase (DAGL), and it undergoes hydrolysis by 

MAGL to form arachidonic acid and glycerol [13].  

Although AEA and 2-AG are well known endogenous 

representatives of ECS but there are some other endogenous 

agonists, which are not well known as N-

arachidonoylethanolamine (anandamide, AEA), 2-

arachidonoylglycerol (2-AG), 2-arachidonyl glyceryl ether 

(noladin ether), N-arachidonoyl dopamine (NADA), and O-

arachidonoyl-ethanolamine (virodhamine) [14]. The first 

endocannabinoids was AEA, which was found in procine brain 

which was later found to be member of family known as N-

acylethanolamine (NAE) [15] while other well know 2-AG was 

identified in rat brain and canine gut [16]. After the discovery of 

Noladin ether, which is synthesized analogue of 2-AG, which 

was later found to present endogenously in porcine brain [17]. 

Biosynthesis of Endocannabinoids and Their Hydrolysis 

AEA synthesis take places from lipid membranes precursor 

PE to N-acylphosphatidylethanolamine (NAPE) by the 

activation of N-acetyletransferase (NAT). NAPE produce AEA by 

the involvement of phospholipase D (NAPE-PLD) [18] (Figure 

1).  
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Biosynthesis of 2-AG begins with the hydrolysis of lipid 

membrane mediated by phospholipase C, which results in the 

production of diacylglycerol (DAG) from phosphatidylinositol 

(PI), which later converted to 2-AG by an enzyme diacylglycerol 

lipases DAGL α and DAGL β [19], as shown in Figure 1.  

After endogenous production of both agonists are released 

into the extracellular space, bind to specific receptor, and 

produce biological response. As these are produced on 

demand to produce biological effects but in pathological 

situations or to terminate effects of endogenous agonists are 

terminated by catalytic enzymes [20]. AEA is hydrolyzed into 

arachidonic acid (AA) and ethanolamine by a well-known 

enzyme FAAH and lesser known N-acylethanolamine-

hydrolyzing acid amidase (NAAA) [21]. 

Innervations of RAS, ANS, and ECS in these vital organs 

have been discussed a lot in literature but cross talk has not 

done to understand the linkage of these systems with each 

other and regulation of functions of these organs by using three 

systems. As mentioned above RAS and ANS are potent 

vasoconstrictors while the presence and role of ECS must be 

justified as vasodilator and regulator of RAS and ANS. It would 

be interesting to know the onset of hypertension and its 

prognosis by keeping in view the role of potential 

vasoconstrictor systems RAS and ANS and a vasodilator ECS 

system. Apparently, it seems that vasoconstrictor systems RAS 

and ANS are opposed by a vasodilator ECS, which helping these 

vital organs to main homeostatic environment. It can be 

assumed that vasoconstriction/vasodilation equation in 

physiological situation is disrupted and lead to pathological 

situations. It would also be interesting to know the status of all 

three systems in physiological and pathological situations. It 

can be deduced that role of endocannabinoids has not been 

addressed properly when compared to RAS and ANS while a 

story of three is explained by two systems. 

HYPERTENSION AND RESISTANT 

HYPERTENSION 

Hypertension is one of the leading causes of nephropathy, 

retinopathy, stroke and cardiopathy. According to new 

recommendation by American College of Cardiology/ American 

Heart Association (AHA) for the detection, evaluation and 

management of high blood pressure (BP) in adult the goal of BP 

treatment was reduced for systolic and diastolic BPs to >130/80 

mmHg [22]. Hypertension managed at baseline level does not 

harm the vital organs but when hypertension becomes 

persistent and turn to resistant hypertension it can cause organ 

damge nephropathy, retinopathy, stroke and cardiopathy. 

Resistant hypertension can be defined as BP of hypertensive 

patients that remains elevated above the base line even 

concurrent use of three different classes of antihypertensive 

drugs at their maximally tolerated dose. These classes are 

mostly calcium channel blocker (CCB), a blocker either from 

angiotensin converting enzyme (ACE) or angiotensin receptor 

blockers (ARBs) and a diuretic [23]. In a retrospective study of 

>200,000 patients with incident hypertension, those with RH 

were 47% more likely to suffer the combined outcomes of 

death, myocardial infarction, heart failure, stroke, or CKD [24]. 

Persistent, uncontrolled elevated BP may be an early sign of 

resistant hypertension. Better control of BP will lead to the 

poor prognosis of hypertension and vice versa. 

 

Figure 1. Biosynthesis & hydrolysis steps of AEA (A): PE was converted to NAPE by help of an enzyme called as NAT. NAPE is further 

converted to AEA by involving one enzyme NAPE-PLD. AEA follow two pathways either attached to CB1 receptor & elicit 

pharmacological response or it is hydrolyzed by enzyme FAAH & NAAA-mediated hydrolysis to ethanolamine and arachidonic acid. 

Biosynthesis & hydrolysis steps of 2-AG (B): PI is converted to DAG with help of an enzyme phospholipase C (PLC). DAG is converted 

to 2-arachidonoylglycerol (2-AG) by an enzyme diacylglycerol lipase (DAGL α & β). 2-AG follows two pathways either attached to 

CB2 receptor & elicit pharmacological response or it is hydrolyzed by three enzymes MAGL, α & β-hydrolase-6 (ABHD-6), & ABHD-

12 into glycerol & arachidonic acid (Source: Author’s own elaboration, using [18-21]) 
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Pathophysiology of Hypertension  

Maintenance of BP is balance between cardiac output and 

peripheral resistance. A person with normal cardiac output 

may have high peripheral resistance, which can be manifested 

not only in large arteries but also in capillaries and arterioles. 

Many factors have been accounted for raised BP and among 

these renin-angiotensin system, sympathetic nervous system, 

salt intake, insulin resistance and obesity while minor factors 

are genetics, endothelial dysfunction due to change in 

endothelin and nitric oxide [24]. Apparently vasoconstriction of 

arterial bed seems to be a major reason for hypertension and 

sympathetic nervous system [25, 26] and renin angiotensin 

aldosterone system (RAAS) seems major factors involved in the 

pathogenesis hypertension [27, 28]. In pathological state both 

systems RAS and ANS dominate and produce their effect 

through various mechanisms as shown in Figure 2.  

Another minor factor, which can induce vasoconstriction 

may be endothelin. At present, most of the classes (angiotensin 

converting enzyme (ACE) inhibitors, angiotensin II receptor 

blockers (ARBs), alpha blockers, calcium channel blockers and 

direct vasodilators) used for the management of hypertension 

are aimed to offset the arterial vasoconstriction while only beta 

blockers are aimed to normalize the heart rate by blocking β1 

receptors on heart. Only prominent vasodilator in the body 

that causes vasodilation in endothelial cells and vascular 

smooth muscle is nitric oxide pathway [29]. Nitric oxide is 

endothelium derived relaxing factor [30] an intermediate 

pathway, which produces its effect by upregulating NO/CGMP 

pathways. In case of essential hypertension, reduced levels of 

NO in the plasma [31] and impaired endothelium dependent 

vasodilation are observed [32]. This can be deduced that up 

regulation of noradrenaline and ang II (vasoconstrictor 

pathway) results in down regulation of NO/CGMP pathway 

(vasodilator pathway).  

Question arises, as follows: 

1. What control these vasoconstrictor systems in persons 

having normal BP?  

2. Is there any vasodilator system in the body, which 

counterbalances vasoconstrictor system? 

3. Hypertension is either dominance of these 

vasoconstrictor systems or absent of vasodilator 

system? 

Indeed, hypertension is a story of two systems that cause 

vasoconstriction, but which system is remained unexplained 

that counter act both systems. We assumed that unexplained 

system is ECS that causes vasodilation and counterbalances 

vasoconstriction of both RAS and ANS in normal individual. 

Role of Endocannabinoid and Exogenous Cannabinoids in 

Hypertension 

Massive amount of data is witness for therapeutic role of 

ECS in hypertension [33-37]. Main reasons that support 

substantial role of ECS in hypertension is based upon three 

aspects:  

(1) vasodilatory effect of endocannabinoids [38],  

(2) overactivation of endocannabinoid tone in 

hypertension [39], and  

(3) dominant hypotensive action in hypertensive animals 

when compared to normotensive animals [39].  

Antihypertensive activity of ECS is also attributed to 

vasculo-protective action [38, 40]. The well-known 

mechanisms attributed to relaxant properties of ECS are, 

(1) stimulation of classical CB1 and/or CB2 receptors,  

(2) TRPV1 receptors,  

(3) calcium channels activation, and  

(4) inhibition of calcium entry, along with  

(5) endothelium-dependent mechanisms [40].  

 

Figure 2. Role of RAS & ANS in pathogenesis of different disease in body. Both noradrenaline & ang II produce systemic 

vasoconstriction, which increase peripheral vascular resistance. This increased resistance in globally & regionally result in disease 

of regional organ like nephropathy, retinopathy, & cardiopathy (Source: Author’s own elaboration, using [24-28]) 
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The effect of ECS on BP and heart rate (HR) is complex and 

depends upon the status of animal whether anesthetized or 

not and response on BP was triphasic [41]. This study made 

conclusion that activation of CB1 receptors downstream the 

mechanism inhibits the release of norepinephrine, negative 

ionotropic effect on heart and stimulation of endothelial 

hypothetical receptor. 

AEA and 2-AG have different effects in conscious animals. 

AEA when given to conscious animals resulted in increased 

plasma norepinephrine level, increased renal sympathetic 

tone and increased in BP when given intracerebroventricular to 

both conscious and anesthetized animals [41]. Same study 

observed monophasic effects of 2-AG on circulatory system 

when given to rats anesthetized either with urethane or 

pentobarbital. The ECS seems does not play a significant role 

in cardiovascular physiological system, which can be argued 

with result of AEA and MethAEA when given intravenously in 

spontaneously hypertensive rats (SHR) and different animal 

models of secondary hypertension induce hypotension when 

compared normotensive rats. Another evidence of ECS 

effectiveness can be argued by action of CB1 receptors 

antagonist, rimonabant and AM251, 2 FAAH inhibitors, URB597 

and AM3506, reduce elevated BP and cardiac contractility while 

these parameters remain unchanged in normotensive rats. 

Prolonged hypotension was observed after acute 

administration of EC agonist like AEA and inhibitors of FAAH, 

URB 597, in hypertensive rats while such convincing results 

were never observed in chronic administrations. AEA 

decreased BP in SHR [42] but increases BP in salt sensitive rats 

[43]. Differences in observed effects may be unrelated dose, 

treatment duration, frequency, and route of administrations. 

Keeping in view the significance of ECS agonists, attempts 

were made to synthesize exogenous cannabinoids to mimic the 

effects of endocannabinoids either by facilitating biosynthesis 

of EC agonists or avoiding their degradation by inhibiting 

hydrolyzing enzymes as shown in Figure 1. latest research 

focused on blocking the receptors of ECS like rimonabant 

(SR141716) [44], AM6545 and AM4113 [45] antagonists for CB1 

and SR144528 antagonist for CB2 [46] while AM1241 have been 

employed as agonists for CB2 receptors to get therapeutic 

responses. Other than synthesized agonists and antagonists 

for CB1 and CB2 receptors, researchers also focused the 

inhibition of endocannabinoids degrading enzymes like FAAH 

[47-49] and MAGL [50, 51]. Interestingly, inhibition of EC 

receptors and degrading enzyme lead to the hypotensive 

effects, which point out the usefulness of ECS in cardiovascular 

system ailments. 

Prognosis of Hypertension to Hypertensive Nephropathy 

Hypertension or resistant hypertension is associated with 

worse clinical outcome and comorbidities. Hypertension is an 

established risk factor for target organ death and 

comorbidities these include nephropathy [28, 52], retinopathy 

[53-55], cardiomegaly [27], and brain [56].  

HYPERTENSIVE NEPHROPATHY 

Increase in pressure load to the kidney vasculature as result 

of elevated BP causes mechanical stretch to the capillaries of 

glomerulus and mesangial cells, which initiate repair response 

that is mediated by fibrogenic cytokines and angiotensin II. 

Proximal tubule is the primary target of injury and progression 

of kidney disease [57]. Repetitive injuries and repair response 

can result in glomerulosclerosis, which is further worsen by 

local factor proteinuria [58]. Proteinuria is a strong and 

independent promotors of progression of renal disease as 

demonstrated in no diabetic renal disease by the modification 

of diet in renal disease study [59]. Important factors in genesis 

of CKD includes activation of RAS, oxidative stress, and NADPH 

ox and ET-1 [60].  

Renal impairment is a frequent problem in cardiovascular 

diseases including hypertension [61]. The destructive renal 

function contributes to tubular interstitial fibrosis, vascular 

sclerosis and glomerular sclerosis [62]. Activation of renin-

angiotensin-aldosterone system, inflammation, oxidative 

stress, endoplasmic reticulum stress, apoptosis and 

mitochondrial dysfunction are vital contributors in 

hypertensive nephropathy (HN) [63-65]. The renal 

inflammation, tubular interstitial fibrosis, proteinuria and 

glomerular sclerosis are valuable markers for evaluation of 

renal dysfunction in chronic kidney disease [66]. Application of 

angiotensin-converting enzyme inhibitor can reverse 

hypertension-induced proteinuria and renal damage [67]. It is 

well accepted that antihypertensive therapy can retard the 

decrease in renal function [59]. It is now well established that 

people with CKD are several times more likely to die from 

cardiovascular causes than those without CKD [68]. A major 

component of this relationship can be safely attributable to 

development of hypertension and its complications [69]. 

Therefore, treatment of hypertension is the most important 

lifesaving intervention in the management of all forms of CKD. 

Role of SNS and RAS in the Pathogenesis of Hypertensive 

Nephropathy 

RAS-blocking agents are the standard therapy for 

renoprotection in patients with diabetic and nondiabetic CKD 

[70, 71]. Last, regarding sympathetic hyperactivity, the use of 

the sympatholytic agent moxonidine in multidrug therapy 

seems to be a promising strategy to achieve optimal BP levels 

in patients with CKD. Vaccarin isolated from vaccaria segetalis 

seed on the right kidney in renovascular hypertension are 

possibly due to downregulation of fibrosis, inflammatory 

molecules, oxidative stress, ang II, and AT1 receptor levels [72]. 

Furthermore, both lowering BP and inhibiting the RAS are 

specific goals for cardiovascular protection in CKD. 

Nephropathy can be established by measuring the podocin 

and nephrin expression in kidney, glomerulosclerosis, 

albuminuria, and proteinuria. 

Seminal studies demonstrating the link between vascular 

perfusion to the kidney and the development of hypertension 

remain fundamental to the field of BP research [73]. It has been 

reported in massive number of research papers that targeted 

blockade of RAS or its activation without angiotensin receptors 

arrest the hypertension to renovascular hypertension [74, 75]. 

RAS significantly affects the renal blood flow in the kidney 

and increase in ang II to lead to decreased renal blood flow, 

which can be supported by previously reported data [76]. Ang 

II not only induce renovascular vasoconstriction but also 

reduced the renal blood flow by reducing renal oxygen delivery 

[75]. This decrease in renal oxygen delivery in the kidney lead 

to cell injury and loss of function [77]. It can be great strategy 

to increased oxygen supply to the kidney and improve function 

by blocking angiotensin receptors. In laboratory experiments 

has improved renal cortical oxygenation in rats with [78] or 

without kidney disease [79]. 
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It is always not the vasoconstriction or decreased 

oxygenation to the renal tissue leads to renal complication. 

Elevated levels of ang II leads to the number of complications 

like increased oxidative stress and glomerulus hypertension, as 

shown in Figure 3.  

Increased oxidative stress in the kidney lead to the 

increased inflammatory mediator and loss of renal function in 

normotensive and hypertensive rats [80]. Hydrogen sulphide is 

well known gaseous transmitter with known ang II blocking 

effects [81-83] have been found to reduce the degree of renal 

IRI by potentiating its antioxidant and anti-inflammatory 

mechanism, as evidenced by decreased NF-kB concentration 

and downregulation of ICAM-1 expression in normotensive and 

hypertensive rats [80]. Reversal of oxidative stress locally in the 

kidney and globally can minimize the injury produced by 

elevated levels of ang II. It is believed that ACE inhibitors like 

hydrogen sulphide can protect kidney by reversing oxidative 

stress. 

Activation of sympathetic nervous system results in the 

release of neurotransmitters like noradrenaline in systemic 

and renovascular circulations. Noradrenaline (NA) is 

responsible for the elevation of BP and involved in the 

pathogenesis of HN as shown in Figure 2. Noradrenalin in the 

kidney are friends or foe [84] or both [85]. Noradrenaline raises 

BP by increasing total peripheral resistance by acting on alpha 

1 adrenergic receptor. Noradrenaline induces vasoconstriction 

to generate a net filtration pressure to perfuse the organ. 

However, due to underlying pathology the increased levels of 

NA will increase total peripheral resistance, which will 

ultimately increase perfusion pressure than required. In 

nutshell, increased perfusion pressure will lead to the 

reduction in blood flow to the organs like spleen [86], 

mesenteric [87] and in kidney [88]. Normally levels of 

noradrenaline are taken as predictor of SNS activity [89]. Renal 

sympathetic nerve activity has gained lot of interest of 

researcher in past decade, and it make sense that kidney is 

densely populated with sympathetic innervations, which 

directly communicate sympathetic nervous system with the 

kidney. Evidence have been provided that sympathetic 

denervation in the kidney has resulted in the reduction of BP in 

patients with resistant hypertension [90, 91]. Renal 

sympathetic nerve activity (RSNA) have been found to play a 

key role in the regulation of BP [92]. It is logical to raise the 

question that reduction of RSNA can reduce BP then increased 

RSNA can also induce renal hypertension, which is called as HN. 

An increase in systemic BP may lead to increased sympathetic 

nerve activity globally and locally in the kidney, which may lead 

to HN. 

It is interesting to know that both RAS and SNS are 

regulator of BP in normal circumstances, but it is equally 

important to know which system in the body is controlling both 

systems (RAS and SNS) to keep them in equilibrium in 

physiological state. When this equilibrium is disturbed or 

disrupted due to onset of disease then immediately both 

systems go on to rise. Is that ECS in the body, which is third 

system to control RAS and SNS? 

 

Figure 3. Role of RAS in pathogenesis of hypertensive nephropathy. After RAAS activation systemically and in kidney 2 separate 

pathways glomerulus hypertension & oxidative stress start in kidney. Glomerulus hypertension led to changes in Bowman’s 

capsule by capillary wall stretching, medial wall thickening, & podocyte injury. All these factors contribute to glomerulus sclerosis, 

which result in disturbance of kidney excretory & reabsorption functions led to renal damage. Second pathway as result of RAS 

activation is oxidative stress in kidney, which cause lipid peroxidation, fibrosis, & inflammation. All these factors contribute in 

establishment of renal damage (Source: Author’s own elaboration, using [70-80]) 
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Role of ECS in the Pathogenesis of Hypertensive 

Nephropathy 

Unfortunately, little is known about ECs in hypertension 

and hypertension induced nephropathy. In addition to its well-

documented role in obesity and its metabolic complications 

[93], the ECS has been implicated in the pathogenesis of CKD, 

including DN [94]. Both CB1R and CB2R are expressed in the 

human and rodent kidney [94], particularly in mesangial cells 

[95], podocytes [96], and proximal tubular cells [97, 98]. ECs 

mostly produces their biological effects by using CB1 and CB2 

receptors, which are G-protein coupled receptors [99, 100]. 

Type one cannabinoid receptor agonists have been shown to 

exhibit a vasodilatory effect [101], inhibit the release of 

neurohormonal factors [102], improve myocardial energy 

metabolism [103], and suppress vasopressin-induced 

vasoconstriction [104]. AEA has anti-inflammatory properties, 

protecting podocytes from Hcys-induced injury by inhibition of 

NLRP3 inflammasome activation through its COX-2 metabolite, 

PGE2-EA [105]. CB1 receptors antagonists increased the acute 

mortality after myocardial infarction [106]. AEA decreases the 

GFR, increases renal blood flow independent of changes to BP 

[107]. AEA vasodilates juxtamedullary afferent arterioles via 

CB1, which was blocked by nitric oxide synthase inhibitors 

[108]. Mechanistically this might be due to endothelial cells and 

mesangial cells that have ability to produce and metabolize 

AEA [108]. Dual inhibition of FAAH and MAGL in the kidney of 

C57 BL mice not only have ameliorated MAP but also increased 

urinary excretion along with natriuresis [47, 50].  

OEA is PPAR-α (peroxisome proliferator-actiavted receptor-

α) agonist and there is evidence of renoprotctive and 

antiproteinuric effects of PPAR-α activation in various animal 

models of kidney injury including DN [58, 82, 109]. 

Furthermore, in cultured podocyte, PPAR-α activation reduce 

apoptosis and increase nephrin expression [109-111]. 

Role of Endocannabinoids in Hypertensive Nephropathy 

Although limited literature is available to establish the role 

of ECS and DN but none of the study has explained the role of 

ECs and their role in nephropathy. None of the study 

investigated the role of eondocannabinoids in HN. 

Nephropathy can be established by measuring the albuminuria 

and proteinuria along with podocin and nephrin expression in 

kidney, glomerulosclerosis, Figure 3 illustrates the mechanism 

of development of nephropathy associated hypertension. 

Chronic increase in MAP is the reason of elevated either NA, ang 

II or both, which has deleterious effects on kidney and lead to 

organ damage manisfested by albuminuria [112]. This elevated 

levels of ang II causes podocyte injury [96] either by nephrin 

loss or activation of CB1 receptors, which magnify the effects of 

ang II [113]. AEA in medulla resulted in diuresis, tubular sodium 

and potassium excretion [50]. However, study showed that 

endogenous ECs can improved the function of kidney but did 

not explain the role of ECs in HN. Study reported that selective 

inhibition of FAAH and dual inhibition of endocannabinoids 

enzymes FAAH and MAGL in medulla of the kidney can lower BP 

and promote diuresis and natriuresis [47, 50]. Invitro data 

provides a mechanism that insult to podocyte in glomerulus 

either increases hyperglycemia or glomerular capillary 

hypertension that enhances CB1 receptor and lower CB2 

receptors respectively [114]. This will imbalance the signaling 

of CB1 and CB2 pathways in ECs. This podocyte damage due to 

CB1 and CB2 imbalance will result in albuminuria, which is 

marker of malfunction of kidney and at the same time loss of 

podocin and nephrin, which are crucial component of 

glomerular filtration barrier. Studies have suggested direct role 

of podocyte CB1 and CB2 receptors in glomerular perm-

selectivity [115]. Imbalance between CB1 and CB2 signalling on 

the other side activate proinflammatory macrophages that 

releases inflammatory cytokines like TNF-α and 

inflammasome, which causes nephrin loss and overexpression 

of elastic collagen membranes (ECM), which will cause renal 

fibrosis in the same mechanism as CB1 receptors does on 

mesangial cell (MC) and myofibroblast (MF) by overexpressing 

ECM [116]. This increased albuminuria, loss of podocin and 

nephrin lead to glomerulosclerosis and nephropathy induced 

by hypertension. Some of the commercially prepared CB1 

receptor antagonists, AM6545 and AM4113, possess reno-

protective effects by interfering with TGFβ1-mediated renal 

inflammation and fibrosis, via peripheral action [45]. In 

nutshell, up regulation of CB2 receptor or utilizing the CB1 

receptor can be a therapeutic strategy to reverse HN. 

CONCLUSION AND FUTURE DIRECTIONS 

Synthesis of synthetic cannabinoids can increase 

therapeutic use and reduced adverse effect profile. Synthetic 

selective inhibitors of CB1 and CB2 receptors antagonists, 

selective inhibitors of ECs enzyme FAAH and MAGL and 

selective agonists for CB1, CB2, and TRPV1 receptors will lead 

to increased therapeutic efficacy and decreased negative 

health impact on public. Both sympathetic nervous system and 

RAS play a pivotal role in the pathogenesis of HN. We propose 

a future direction that upregulation of ECs will not only 

downregulate SNS and RAAS but also will arrest the 

progression of HN and regulate kidney functions. 
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